FEEDBACKS - significado y definición. Qué es FEEDBACKS
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es FEEDBACKS - definición

CHOICE OF PARAMETERS DURING ATHMOSPHERIC OR CLIMATE MODELLING
Climate parameters, forcings and feedbacks; Parametrization (climate); Parametrization (atmospheric modeling); Parameterisation (climate modeling)
  • Visualization of a buoyant also known as Gaussian air pollutant dispersion plume
  • Field of [[cumulus cloud]]s

Fire–vegetation feedbacks and alternative stable states         
  • 380x380px
  • Conceptual model of alternative stable states in Klamath Mountains, after Odion et al., 2010
  • Douglas fir plantation example
  • moorland in southwest Tasmania
  • Mixed conifer forest near Klamath National Forest
Draft:Fire vegetation feedbacks and alternative stable states; Draft:Fire-vegetation feedbacks and alternative stable states; Fire-vegetation feedbacks and alternative stable states
The relationships between fire, vegetation, and climate create what is known as a fire regime. Within a fire regime, fire ecologists study the relationship between diverse ecosystems and fire; not only how fire affects vegetation, but also how vegetation affects the behavior of fire.
feedback         
  • right
  • D-type flip flops]]
  • alt=
  • op-amp relaxation oscillator]]
  • An example of a negative feedback loop with goals
  • A positive feedback loop example
  • Maintaining a desired system performance despite disturbance using negative feedback to reduce system error
PROCESS IN WHICH INFORMATION ABOUT THE PAST OR THE PRESENT INFLUENCES THE SAME PHENOMENON IN THE PRESENT OR FUTURE; IT OCCURS WHEN OUTPUTS OF A SYSTEM ARE ROUTED BACK AS INPUTS AS PART OF A CHAIN OF CAUSE-AND-EFFECT THAT FORMS A CIRCUIT OR LOOP
Feedback loop; Feedback loops; Feed-back; Sensory feedback; Feedback mechanism; Electronic feedback loop; Feedback circuit; Feedback Inhibition; Fb control; Feedback diagram; Feed back control; Feedback control; Reflexive feedback; Feedback Control; Feedback effect; Electronic feedback loops; Feedback signal
n. negative; positive feedback
feedback         
  • right
  • D-type flip flops]]
  • alt=
  • op-amp relaxation oscillator]]
  • An example of a negative feedback loop with goals
  • A positive feedback loop example
  • Maintaining a desired system performance despite disturbance using negative feedback to reduce system error
PROCESS IN WHICH INFORMATION ABOUT THE PAST OR THE PRESENT INFLUENCES THE SAME PHENOMENON IN THE PRESENT OR FUTURE; IT OCCURS WHEN OUTPUTS OF A SYSTEM ARE ROUTED BACK AS INPUTS AS PART OF A CHAIN OF CAUSE-AND-EFFECT THAT FORMS A CIRCUIT OR LOOP
Feedback loop; Feedback loops; Feed-back; Sensory feedback; Feedback mechanism; Electronic feedback loop; Feedback circuit; Feedback Inhibition; Fb control; Feedback diagram; Feed back control; Feedback control; Reflexive feedback; Feedback Control; Feedback effect; Electronic feedback loops; Feedback signal
<electronics> Part of a system output presented at its input. Feedback may be unintended. When used as a design feature, the output is usually transformed by passive components which attenuate it in some manner; the result is then presented at the system input. Feedback is positive or negative, depending on the sign with which a positive change in the original input reappears after transformation. Negative feedback was invented by Black to stabilise vacuum tube amplifiers. The behaviour becomes largely a function of the feedback transformation and only minimally a function of factors such as transistor gain which are imperfectly known. Positive feedback can lead to instability; it finds wide application in the construction of oscillators. Feedback can be used to control a system, as in {feedback control}. (1996-01-02)

Wikipedia

Parametrization (climate modeling)

Parameterization in a weather or climate model is a method of replacing processes that are too small-scale or complex to be physically represented in the model by a simplified process. This can be contrasted with other processes—e.g., large-scale flow of the atmosphere—that are explicitly resolved within the models. Associated with these parameterizations are various parameters used in the simplified processes. Examples include the descent rate of raindrops, convective clouds, simplifications of the atmospheric radiative transfer on the basis of atmospheric radiative transfer codes, and cloud microphysics. Radiative parameterizations are important to both atmospheric and oceanic modeling alike. Atmospheric emissions from different sources within individual grid boxes also need to be parameterized to determine their impact on air quality.

Ejemplos de uso de FEEDBACKS
1. "These positive feedbacks with landmasses weren‘t known about then.
2. He is also studying videos made by analyst S Ramakrishnan, which gives feedbacks on a player‘s negative and positive points.
3. "Feedbacks in the system are starting to take hold," says the National Snow and Ice Data Center‘s lead scientist Ted Scambos.
4. "We knew at some point we‘d get these feedbacks happening that exacerbate global warming, but this could lead to a massive injection of greenhouse gases.
5. Since a reduction in ice cover was important in the instigation of these trends, they constitute positive feedbacks," the scientists write in the journal Geophysical Research Letters.